Unsymmetric salen ligands bearing a Lewis base: intramolecularly cooperative catalysis for cyanosilylation of aldehydes.

نویسندگان

  • Ye-Qian Wen
  • Wei-Min Ren
  • Xiao-Bing Lu
چکیده

A series of unsymmetric salen ligands derived from 1,2-diaminocyclohexane bearing an appended Lewis base on the three-position of one aromatic ring were synthesized by the reaction of various functional salicyaldehydes with the condensation product of 1,2-diaminocyclohexane mono(hydrogen chloride) and 3,5-di-tert-butylsalicylaldehyde. These ligands in conjunction with Ti(O(i)Pr)(4) exhibited excellent activity in catalyzing the cyanosilylation of aldehydes with trimethylsilyl cyanide (TMSCN) at mild conditions. The highest activity was observed in the catalyst system with regard to the salen ligand bearing a diethylamino group, which proved to be active even at a high [aldehyde]/[catalyst] ratio up to 50000. In a low catalyst loading of 0.05 mol%, the quantitative conversion of benzaldehyde to the corresponding cyanosilylation product was found within 10 min. at ambient temperature. An intramolecularly cooperative catalysis was proposed wherein the central metal Ti(IV) is suggested to play a role of Lewis acid to activate aldehydes while the appended Lewis base to activate TMSCN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Lewis acid–Lewis base activation in enantioselective additions to aldehydes*

Reaction of benzaldehyde with ethyl cyanoformate in the presence of Lewis acidic Ti(IV) complexes of bispyridylamide or salen ligands and Lewis basic amines affords the O-alkoxycarbonylated cyanohydrin. In the presence of the salen-based catalytic system, acetyl cyanide can also be added to benzaldehyde, providing a highly enantioselective direct route to the O-acetylated cyanohydrin.

متن کامل

Achiral phenolic N-oxides as additives: an alternative strategy for asymmetric cyanosilylation of ketones

The activation of chiral titanium(IV) complexes with additives, phenolic N-oxides, is found to provide an alternative strategy for asymmetric cyanosilylation of ketones in excellent yield with up to 82% ee. 2004 Elsevier Ltd. All rights reserved. Recent years, there are a number of important observations made in regarding the effect of additives on asymmetric catalytic reactions. The addition o...

متن کامل

Multifunctional asymmetric catalysis.

Two types of general and practical enantioselective catalysts, namely, bimetallic complexes and Lewis acid-Lewis base bifunctional catalysts were developed based on the concept of multifunctional catalysis. In the first part of this review, the first example of a catalytic enatioselective nitro-Mannich reaction as well as a direct catalytic enantioselective aldol reaction of 2-hydroxyacetopheno...

متن کامل

Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate

Propylene carbonate can be used as a green solvent for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers from aldehydes and trimethylsilyl cyanide catalysed by VO(salen)NCS, though reactions are slower in this solvent than the corresponding reactions carried out in dichloromethane. A mechanistic study has been undertaken, comparing the catalytic activity of VO(salen)NCS in propylene...

متن کامل

Gold-catalyzed cyanosilylation reaction: homogeneous and heterogeneous pathways.

Gold had been considered to be an extremely inert metal, but recently it was found that nanometer-sized gold particles on metal-oxide supports acted as catalysts for simple organic reactions, such as oxidation and hydrogenation, even at or below room temperature. Herein, we report that gold nanoparticles (AuNPs) of zero oxidation state (Au0) are catalytically active for a C--C bond-forming reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 9 18  شماره 

صفحات  -

تاریخ انتشار 2011